Hirota bilinear forms with 2-toroidal symmetry
نویسندگان
چکیده
منابع مشابه
Hirota Bilinear Formalism and Supersymmetry
Extending the gauge-invariance principle for τ functions of the standard bilinear formalism to the supersymmetric case, we define N = 1 supersymmetric Hirota operators. Using them, we bilinearize SUSY nonlinear evolution equations. The super-soliton solutions and extension to SUSY sine-Gordon are also discussed. As a quite strange paradox it is shown that the Lax integrable SUSY KdV of Manin-Ra...
متن کاملHirota bilinear equations with linear subspaces of solutions
We explore when Hirota bilinear equations possess linear subspaces of solutions. First, we establish a sufficient and necessary criterion for the existence of linear subspaces of exponential traveling wave solutions to Hirota bilinear equations. Second, we show that multivariate polynomials whose zeros form a vector space can generate the desired Hirota bilinear equations with given linear subs...
متن کاملBilinear Forms
The geometry of Rn is controlled algebraically by the dot product. We will abstract the dot product on Rn to a bilinear form on a vector space and study algebraic and geometric notions related to bilinear forms (especially the concept of orthogonality in all its manifestations: orthogonal vectors, orthogonal subspaces, and orthogonal bases). Section 1 defines a bilinear form on a vector space a...
متن کاملInitial Data with Toroidal Conformal Symmetry
A new class of time-symmetric solutions to the initial value constraints of vacuum General Relativity is introduced. These data are globally regular, asymptotically flat (with possibly several asymptotic ends) and in general have no isometries, but a U(1) × U(1) group of conformal isometries. After decomposing the Lichnerowicz conformal factor in a double Fourier series on the group orbits, the...
متن کاملFinite - genus solutions for the Hirota ’ s bilinear difference equation
The finite-genus solutions for the Hirota's bilinear difference equation are constructed using the Fay's identities for the θ-functions of compact Riemann surfaces. In the present work I want to consider once more the question of constructing the finite-genus solutions for the famous Hirota's bilinear difference equation (HBDE) [1] which has been solved in [2] using the so-called algebraic-geom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 1999
ISSN: 0375-9601
DOI: 10.1016/s0375-9601(99)00093-6